Sari la conținutul principal

Actions of monoidal categories

Action of a monoidal category

Let (M,,IM,a,l,r)(\mathcal{M}, \otimes, I_\mathcal{M}, a, l, r) be a monoidal category. A (left) M\mathcal{M}-action is:

  • a category C\mathcal{C}
  • a functor MCC\mathcal{M} \odot \mathcal{C} \rightarrow \mathcal{C}
  • a natural isomorphism λA:IAA AOb(C)\lambda_A: I \odot A \xrightarrow{\sim} A~\forall A \in Ob(\mathcal{C}) called the unitor
  • a natural isomorphism αM,N,A:(MN)AM(NA) M,NOb(M) AOb(C)\alpha_{M, N, A}: (M \otimes N) \odot A \xrightarrow{\sim} M \odot (N \odot A)~\forall M, N \in Ob(\mathcal{M})~\forall A \in Ob(\mathcal{C}) called the actor

such that the following diagrams commute with respect to the unitors and associators of M\mathcal{M}:

Resources

ncatlab