Lecture 32: Introduction to
MPI I/0

William Gropp
www.cs.illinois.edu/~wgropp

Parallel I/O in MPI

e Why do I/O in MPI?
¢ Why not just POSIX?

e Parallel performance
e Single file (instead of one file / process)

e MPI has replacement functions for POSIX
I/0
¢ Provides migration path

e Multiple styles of I/O can all be expressed
in MPI

][¢ Including some that cannot be expressed
without MPI : PARALLEL@ILLINOIS

Non-Parallel I/0

o

e Non-parallel

e Performance worse than sequential

e Legacy from before application was parallelized
][e Either MPI or not

; PARALLEL@ILLINOIS

Independent Parallel I/0

e Fach process writes to a separate file

e o
I s

 Pro: parallelism

« Con: lots of small files to manage

o
—

* Legacy from before MPI

« MPI or not

4

Y

A

PARALLEL@ILLINOIS

Cooperative Parallel I/0

e Parallelism
e Can only be expressed in MPI

J§ « Natural once you get used to it
. PARALLEL@ILLINOIS

Why MPI is a Good Setting
for Parallel I/0

e Writing is like sending and reading is
like receiving.

e Any parallel I/O system will need:
¢ collective operations

¢ user-defined datatypes to describe both
memory and file layout

¢ communicators to separate application-level
message passing from I/O-related message
passing

¢ non-blocking operations
@ ° L.e. lots of MPI-like machinery

. PARALLEL@ILLINOIS

What does Parallel I/0O Mean?

o At the program level:

¢ Concurrent reads or writes from
multiple processes to a common file

o At the system level:

¢ A parallel file system and hardware
that support such concurrent access

; PARALLEL@ILLINOIS

Independent I/O with
MPI-IO

g PARALLEL@ILLINOIS

The Basics: An Example

e Just like POSIX I/0O, you need to
¢ Open the file
¢ Read or Write data to the file
¢ Close the file

e In MPI, these steps are almost the
Sdme.
¢ Open the file: MPI_File_open
¢ Write to the file: MPI_File_write

T ¢ Close the file: MPI_File_close

5 PARALLEL@ILLINOIS

A Complete Example

#include <stdio.h>
#include "mpi.h”
int main(int argc, char *argv|[])
{
MPI_File fh;
int buf[1000], rank;
MPI_Init(0,0);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_File_open(MPI_COMM_WORLD, "test.out",
MPI_MODE_CREATE|MPI_MODE_WRONLY,
MPI_INFO_NULL, &fh);
if (rank == 0)
MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);
MPI_File_close(&fh);
MPI_Finalize();
return O;

10 PARALLEL@ILLINOIS

Comments on Example

e File Open is collective over the communicator

¢ Will be used to support collective I/0O, which we will
see is important for performance

¢ Modes similar to Unix open

¢ MPI_Info provides additional hints for performance
e File Write is independent (hence the test on

rank)

¢ Many important variations covered in later slides

e File close is collective; similar in style to
MPI_Comm_free

1867

' 1 PARALLEL@ILLINOIS

Writing to a File

Use MPI File write oOr
MPI File write at

Use MPI_MODE WRONLY Or MPI_MODE RDWR
as the flags to MPI _File open

If the file doesn’t exist previously, the flag
MPI_MODE CREATE must also be passed to
MPI File open

We can pass multiple flags by using
bitwise-or '|" in C, or addition '+" in
Fortran

12 PARALLEL@ILLINOIS

Ways to Access a Shared File

MPI File seek

MPI File read

MPI File write
MPI File read at

MP I_Fi le_wri te at

MPI_Fi le_read_shared
MPI_Fi 1e_wri te_shared

13

>

like Unix I/O

combine seek and I/0O
for thread safety

} use shared file pointer

PARALLEL@ILLINOIS

Using Explicit Offsets

1867

#include “mpi.h”
MPI Status status;
MPI File fh;

MPI Offset offset;

MPI File open(MPI COMM WORLD, “/pfs/datafile”,
MPI MODE RDONLY, MPI INFO NULL, &fh)

nints FILESIZE / (nprocs*INTSIZE),

offset = rank * nints * INTSIZE;

MPI File read at(fh, offset, buf, nints, MPI INT,

&status) ;
MPI Get count(&status, MPI INT, &count);
printf (“process %d read %d ints\n”, rank, count);

MPI File close(&fh);

14 PARALLEL@ILLINOIS

Why Use Independent I/0O?

e Sometimes the synchronization of
collective calls is not natural

e Sometimes the overhead of
collective calls outweighs their
benefits

¢ Example: very small I/O during
header reads

i5 PARALLEL@ILLINOIS

Noncontiguous I/O in File

e Each process describes the part of the
file for which it is responsible
¢ This is the “file view”
¢ Described in MPI with an offset (useful for

headers) and an MPI_Datatype

e Only the part of the file described by the
file view is visible to the process; reads
and writes access these locations

e This provides an efficient way to perform
noncontiguous accesses

1867

6 PARALLEL@ILLINOIS

Noncontiguous Accesses

Common in parallel applications
Example: distributed arrays stored in files

A big advantage of MPI I/O over Unix I/O is
the ability to specify noncontiguous accesses
in memory and file within a single function call
by using derived datatypes

¢ POSIX only supports non-contiguous in file, and only
with IOVs

Allows implementation to optimize the access

Collective I/O combined with noncontiguous
accesses yields the highest performance

17 PARALLEL@ILLINOIS

File Views

e Specified by a triplet (displacement,
etype, and filetype) passed to
MPI File set view
e displacement = number of bytes to be
skipped from the start of the file
¢ e.g., to skip a file header

e etype = basic unit of data access (can be
any basic or derived datatype)

o filetype = specifies which portion of the
file is visible to the process

1867

18 PARALLEL@ILLINOIS

A Simple Noncontiguous File
View Example

B etype = MPLINT

- filetype = two MPI_INTs followed by
a gap of four MPI_INTs
head of file FILE
V T T
< - >< >< >
displacement filetype filetype and so on...

9 PARALLEL@ILLINOIS

Noncontiguous File View

Code
MPI Aint 1lb, extent;

MPI Datatype etype, filetype, contig;
MPI Offset disp;

MPI Type contiguous (2, MPI_ INT, &contigq);

l1b = 0; extent = 6 * sizeof(int);

MPI Type create resized(contig, 1lb, extent, &filetype);
MPI Type commit (&filetype)

disp = 5 * sizeof(int);, etype = MPI INT;

MPI File open(MPI COMM WORLD, "/pfs/datafile",
MPI MODE CREATE | MPI MODE RDWR, MPI INFO NULL, &fh);
MPI File set view(fh, disp, etype, filetype, "native",
MPI INFO NULL) ;
MPI File write(fh, buf, 1000, MPI INT, MPI STATUS IGNORE) ;

I

2 PARALLEL@ILLINOIS

Collective I/O and MPI

e A critical optimization in parallel I/O

e All processes (in the communicator) must call the
collective I/0 function

e Allows communication of “big picture” to file system
¢ Framework for I/O optimizations at the MPI-IO layer

e Basic idea: build large blocks, so that reads/writes in I/O
system will be large

¢ Requests from different processes may be merged together

¢ Particularly effective when the accesses of different
processes are noncontiguous and interleaved

[
— >
|-
L
—
L

» PARALLEL@ILLINOIS

Small individual
requests

— ==

Large collective
access

Collective I/O Functions

- MPI File write at all, etc.
¢ all indicates that all processes in the group

specified by the communicator passed to
MPI_File open Will call this function

¢ at indicates that the position in the file is
specified as part of the call; this provides
thread-safety and clearer code than using a
separate “seek” call
e Each process specifies only its own
access information — the argument list
is the same as for the non-collective

functions
» PARALLEL@ILLINOIS

The Other Collective I/0 Calls

* MPI File seek
 MPI File read all - like Unix 1/0
* MPI File write all J
) MPI_File_read_at_all combine seek and I/0O
- MPI File write at all for thread safety

* MPI File read ordered

o MPI_File_wri te_ordere

J use shared file pointer

- PARALLEL@ILLINOIS

Using the Right MPI-IO
Function

Any application as a particular “I/O access
pattern” based on its I/O needs

The same access pattern can be presented to

the I/O system in different ways depending on
what I/O functions are used and how

We classify the different ways of expressing I/
O access patterns in MPI-IO into four levels:
level O - level 3

We demonstrate how the user’s choice of level
affects performance

24 PARALLEL@ILLINOIS

Example: Distributed Array

Id_?srtgriebagzy PO|P1|P2|P3 Each square represents
a subarray in the memory
among o el Rl of a single process

processes
P8 | P9 [P10|P11

P12|P13|{P14|P15

Access Pattern in the file
| p0| Pt| P2| P3|l POl PL|P2|

| p4| p5| P6| P7| P4l P5| PG|

| p8| po| Pi10]| P11| P8| P9 lPIO|

|p12 | P13 P14 | P15 | P12 | P13 | P14

25 PARALLEL@ILLINOIS

Level-0 Access

1867

e Each process makes one independent read

request for each row in the local array (as in
Unix)

MPI File open(..., file, ..., &fh);
for (i=0; i<n local rows; i++) {

MPI File seek(fh, ...);

MPI File read(fh, &(A[i][O0]), ...):

}
MPI File close(&fh);

% PARALLEL@ILLINOIS

Level-1 Access

e Similar to level 0, but each process uses collective
I/O functions

MPI File open(MPI COMM WORLD, file, ...,
&fh) ;

for (i=0; i<n local rows; i++) {
MPI File seek(fh, ...);
MPI File read all(fh, &(A[i][O0]), ...):

}
MPI File close(&fh);

1867

27 PARALLEL@ILLINOIS

Level-2 Access

e Each process creates a derived datatype to
describe the noncontiguous access pattern, defines
a file view, and calls independent I/O functions

MPI Type create subarray(...,
&subarray, ...);

MPI Type commit (&subarray);

MPI File open(..., file, ..., &fh);
MPI File set view(fh, ..., subarray, ...);
MPI File read(fh, A, ...);

MPI File close(&fh);

2 PARALLEL@ILLINOIS

Level-3 Access

e Similar to level 2, except that each process uses
collective I/0O functions

MPI Type create subarray(...,
&subarray, N

MPI Type commit (&subarray)
MPI File open(MPI COMM WORLD, file,...,

&fﬂ);
MPI File set view(fh, ..., subarray, ...);
MPI File read all(fh, A, ...);

MPI File close(&fh);

% PARALLEL@ILLINOIS

The Four Levels of Access

File Space

>

.............

........

"""""""" I < Level 1

gt

<— Level 3

>
2 3 Processes

30 PARALLEL@ILLINOIS

Collective I/0
Can Provide Far Higher Performance

« Write performance for
a 3D array output in oo ' " LevelO

canonical order on 2 3000 | Lovel 3 e |

supercomputers,

using 256 processes 2500 |-

(1 process / core)

« Level O (independent
I/O from each
process for each
contiguous block of 1000

memory) too slow on
BG/Q 500 |

« Total BW is still low
because relatively
few nodes in use (16
for Blue Waters =
~180MB/sec/node)

2000

1500

Bandwidth (MB/s)

Blue Gene/Q Blue Waters

31 PARALLEL@ILLINOIS

Summary

1867

e Key issues that I/O must address

¢ High latency of devices
e Nonblocking I/O; cooperative I/O

¢ I/0 inefficient if transfers are not both large
and aligned with device blocks
e Collective I/0O; datatypes and file views

¢ Data consistency to other users

e POSIX is far too strong (primary reason parallel
file systems have reliability problems)

e "Big Data” file systems are weak (eventual
consistency; tolerate differences)

e MPI is precise and provides high performance;
consistency points guided by users

3 PARALLEL@ILLINOIS

